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flow, revealed that early flow external to the charge can alter the flame path
and equilibrate pressures throughout the gun chamber. Moreover, characteristics
of the bag material itself - strength and permeability, affecting both communi-
cation of gases between the charge and external' regions and persistence of
circumferential ullage - can have significant impact on the development of
longitudinal pressure waves in the tube.

Yet these calculations recognized only an axial thermal stimulus in the
propellant bed and ignored entirely the structure of the radial flow field in
the two-phase medium. Current work addresses application of a fully two-
dimensional, axisymmetric, two-phase flow model (TDNOVA) to the bagged-charge
problem, providing for the first time an explicit treatment of two-dimensional
flamespread in this configurally complex environment. Functioning of the
basepad/centercore igniter is included within the physical scope of the model,
as is the presence of reactive parasitic charge components which exhibit exo-
thermic or endothermic properties in addition to resistance to gas and ,olid-
phase flows.

Results are presented for the 155-m, M198 Howitzer, firing the top-zone
M203 Propelling Charge, with code input varied to reflect changes in the above-
mentioned parasitic-component characteristics and in charge/chamber interface.
Comparison is made with previously published calculations as well as with
experimental data.
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F[ I. BACKGROUND

Theoretical and experimental efforts continue to bring about an

improved understanding of the detailed phenomenology of the gun interior
ballistic cycle. Investigators addressing ignition and combustion
processes1-3 have been joined by those inteeted in the details of heat

transfer to and erosion of the bore surface I . Our work has focused on the
process of flamespreading as a hydrodynamic problem and on the influence of
the path of flamespreading on the longitudinal pressure field throughout the
entire interior ballistic cycle. In this study, we further limit our
attention to bagged propelling charges, the configural complexities of which
are particularly challenging to modeler and designer alike.

In a previous paper6, we presented simulations of a bagged charge based
on two modeling representations: first, a one-dimensional-with-area-change
treatment which assumed a uniform cross-sectional distribution of propellant
within the chamber at any given axial location; and second, a quasi-two-
dimensional analysis which treated the propelling charge and unoccupied
regions in the gun chamber as disjoint but coupled regions of one-
dimensional flow. The latter description also allowed some recognition of
the permeability and strength of the bag sidewall to be embedded in the
representation as boundary conditions linking the coaxial regions of one-
dimensional flow.

1.B. Fisher, "Continued Development and Documenation of the catepan
Interior Ballistics Code," Catepan Report No. 6689-D-1, Cann
Corporation, Buffalo, MY, Pebr.uary 1981.

2P.S. Gough, "Ihe low of a Compressible Gae Through an Aggregate of Mobile
Reacting Paticles," IHCR 80-7, Naval ordnance Station, Indian Head, mD,
December 1980.

3K.K. Kuo and J.H. Koo, " 2' aneient Combustion in Granular Propellant Beds.
1' Part 1: Teoretical Modeling and N ,erical Solution of Tr-ansient

Combustion Processes in Mobile Granular Propellant Beds," BRL-C-346, LOA
ARP4DCO, Ball istic Research Laboratory, Aberdeen Proving Ground, MD,
August 1977 (AD #A044998).

4 H.J. GibeZing, R.C. Buggetn, and H. McDonald, "Development of a 2Wo-
Dimensional Implicit Interior Batllitic Code," ARBRL-CR-00411, USA
ARRADCO, Bat listic Research Laboratory, Aberdeen Proving Ground, MV,
January 1981. (AD A084092)

5A.C. Buckingham, "Research on Gun Barrel Erosion Mechanisms," Energy and
Technology Review, Lawrence Livermore Lahoratorj, CA, January 1979.
6A.w. Horet and P.S. Gough, "odeling Ignition and flareepread Phenomena in

Bagged ArtilZery Charges," ARBRL-TR-02263, USA ARRADCCA, Ballistic Research
Laboratory, Aberdeen Proving Ground, I, September 1980. (AD A091790)
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Calculations using the quasi-two-dimensional model revealed the path of
flamespread to be sensitive to both bag configuration and material
characteristics, with a persistence of circumferential ullage external to
the bag providing a path for equilibration of the longitudinal pressure
field. The influence of this path was greatly diminished, however, when
axial ullage was not present at the downstream end of the chamber; in this
case, predictions were essentially equivalent to those provided by the
simpler, one-dimensional representation. The influence of radial flow,
including flame propagation, within the two-phase medium itself could not,
of course, be assessed with either of these models. We report herein on
calculations performed using a fully two-dimensional, axisymmetric, two-
phase flow model to describe igniter functioning, flamespread, and
pressurization in a 155-mm howitzer.

II. TECHNICAL DISCUSSION

A. Description of the Problem

The 155-m, M203 Propelling Charge is a conventional, top-zone, bagged
charge currently employed with the 155-mm, M198 Towed Howitzer. Depicted in
Figure 1, this charge employs about 11.8 kg of 130A1, triple-base, granular
propellant. The ignition system is composed of a cloth basepad containing
28 g of Class 1 black powder and a molded-nitrocellulose centercore tube,
which houses a cloth snake filled with an additional 113 g of black
powder. The charge, confined within a resin-impregnated cloth bag, is
encumbered with a number of parasitic components, each designed to perform a
special function. A cloth donut filled with granular potassium sulfate
serves to reduce muzzle flash. Lead foil, a de-coppering agent, and a
titanium dioxide/wax wear-reducing additive are also present as liners which
surround approximately the forward two-thirds of the charge. Finally, a
cloth lacing Jacket provides additional rigidity to the package.

The normal sequence of events during functioning of this charge begins
when hot combustion products from the primer exit the spithole in the
spindle face and impinge upon the basepad. As the basepad begins to burn,
product gases and hot particles penetrate the several layers of cloth, enter
the centercore tube, and ignite the snake as intended. However, basepad
combustion products may also penetrate the rear of the bag and ignite the
main propellant charge directly. This competition with centercore
functioning is critical, and a victory for direct, local ignition of the
propellant bed by the basepad could lead to catastrophic pressure waves in a
high-loading-density charge. Basepad and other early combustion products
can also flow into the axial ullage behind the charge, through the
circumferential ullage around the bag, and into the axial ullage in front of
the bag as shown in Figure 2. Such flow around the bag can equilibrate
pressures throughout the chamber early in the cycle, but the persistence of
this ullage is unknown and may depend heavily on charge-component
characteristics. Further, a possible variation in charge standoff from the
spindle face can be expected to affect coupling between primer spithole
output and the basepad, as well as alter the initial distribution of
propellant and ullage.

. ... . . .!. , ... -_ -' -i . . . - ' - si, .. ... . I .. . ... . .. . . . . , r . ... .. . . . .
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Figure 1. 155-mm, M203 Propelling Charge
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B. Modeling Approach

Simulations presented in this paper were performed using TDNOVA7 , an
unsteady, two-dimensional, axisymmetric, two-phase flow representation of
the interior ballistic cycle. The development of TDNOVA was undertaken
largely in response to the configural complexities of bagged charges which
fell outside the physical scope of the previously-developed, one-dimensional
NOVA code8 .

Flamespread through bag charges is believed to be influenced strongly
by details of the ullage which initially surrounds the bag and by the
behavior of the bag material itself. Accordingly, an explicit
representation is made in TDNOVA of the region occupied by the propelling
charge at any time. The flow in the ullage, which surrounds the region
occupied by the propellant, is represented as unsteady, inviscid, and single
phase.

The ullage is divided into several disjoint regions, coupled to one
another and to the two-phase flow in the propelling charge by means of
finite jump conditions at all their mutual boundaries. By formulating the
theory in such a manner as to use directly the jump conditions at the
boundary of the bag, we provide a direct mechanism for the representation of
the influence of the bag. Impermeability is reflected directly within the
momentum jump condition as a quasi-steady flow loss. Similarly, the
influence of exothermically reactive components, such as the basepad and
centercore tube, and endothertically reactive components, such as the salt
bag, are reflected by means of source terms in the mass and energy jump
conditions.

The division of the ullage into several regions is based on the
instantaneous configuration of the external boundaries, namely the breech,
the tube, and the moving projectile, and on the configuration of the bag
which predicates regions of ullage behind it, ahead of it, around it, and
within it. Each such region of ullage is treated as lumped parameter,
quasi-one-dimensional, or as fully two-dimensional, in accordance with
criteria based on its dimensions.

In addition to the representation of a basepad and centercore tube
within the structure of the bag, the model recognizes the influence of a
centercore ignition charge, coaxial with the bag and moving with it, and
which is represented as a quasi-one-dimensional, two-phase flow. As with
the ullage, the centercore is coupled to the state of the flow within the
bag and, where applicable, the ullage at the ends of the chamber, by
reference to finite jump conditions. The representation of the ignition

7P.S. Cough, "A T -DiensioiaZ ModeZ of the Interior Ballistics of Bagged
Artillery Charges," ARBRL-CR-O04i52, USA ARRADCC4, Ballistic Research
Laboratory, Aberdeen Proving Ground, MD, ApriZ 1981. (AD A100751)

8P.S. Gough, "he NOVA Code: A UerP's Mnual. VoZtw I. Desoiption and
Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, Deember 1980.

10

.... . .. .. ... .. ....



train also admits the specification of an externally injected stimulus of
predetermined flow rate and energy.

Each region of continuous flow properties is sapped onto a regular
geometric figure, a line or a square, by means of a boundary-fitted--mesh-
transformation algorithm. The method of solution is based on an explicit,
two-step marching scheme which utilizes the characteristic form of the
balance equations at the external and the internal boundaries.

Figure 3 depicts schematically the level of representation provided by
TDNOVA, along with the one-dimensional-with-area-change and quasi-two-
dimensional approximations employed in our previous discussion6 .

C. Calculations

Those features of the input data base not associated with the multi-
dimensionality of the problem have been reported previously6. A schematic
representation of additional, configural information required by TDNOVA is
provided as Figure 4. We observe that the assumption of axisymmetry leads
to an annular distribution of ullage external to the bag sidewall.

Initially, a fully two-dimensional analysis of flow within the two-
phase medium is provided. In the calculations described, however, the
regions of ullage contiguous to the bounding surfaces of the bag are treated
as quasi-one-dimensional (i.e., one-dimensional-with-area-change), the
continuum coordinate being defined by the boundary. Corner regions of
ullage are given a lumped-parameter representation. The centercore ignition
charge is treated as a one-dimensional, two-phase flow, while the basepad is
recognized in terms of an exothermic region of the rear boundary of the
charge.

Following completion of flamespread, rupture of the bag sidewall, and
equilibration of the radial structure of the pressure field to within some
user-specified limit, a quasi-two-dimensional approach is introduced,
similar to that reported previously6. For the duration of the interior
ballistic cycle, the propelling charge is given a quasi-one-dimensional
representation, as is the circumferential ullage, while regions of axial
ullage at each end of the chamber are treated as lumped parameter.

It should be pointed out that a fully two-dimensional treatment of the
ullage is available in TDNOVA. However, the two-dimensional nature of the
flow in these regions may well be outside the scope of the inviscid gas flow
equations currently used, and the quasi-one-dimensional description of flow
in the ullage may be the better of the two options available.

We have provided quantitative estimates of the permeability and
strength of various portions of the charge package; however, these values
are based only on intuition or limited testing now underway at the Ballistic
Research Laboratory. Further, it must be realized that no account is taken
in the analysis of the independent motion of the bag, all packaging
materials being treated as attributes of the surface of the propellant bed
itself.

• 11
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Finally, we draw attention to the fact that an artificially-low
ignition temperature (300 K) is provided for the black powder centercore to
facilitate convectively-driven flameepread at low pressures, the discharge
of hot molten salts being outside the current scope of the code. This
compromise is consistent with our motive of treating the centercore igniter
as a two-phase medium in order to capture the appropriate resistance to flow
during the overall ignition event.

Turning now to the details of the solutions, we begin by addressing a
calculation based on input data describing the 155-mm, M198 Howitzer firing
the 1203 Propelling Charge, positioned the nominal 25-mm from the spindle
face. The initial thermal stimulus associated with functioning of a primer
located in the breechblock lies outside the scope of the current
representation and the calculation begins with combustion of the basepad.
Figures 5 and 6 present isometric projections of the gas pressure and
temperature fields at selected times during the early portion of the
interior ballistic cycle. We note early pressurization and flamespread
within the centercore, the centercore tube wall having been described as
being initially impermeable to flow. However, a flow of hot combustion
products external to the bag also takes place, which, because of the
permeability of the rear portion of the bag sidewall, leads to
early (t --2 ms) pressurization of the entire rear portion of the
chamber. (The forward two-thirds of bag sidewall is given an initially-
impermeable representation to reflect the presence of lead-foil and titanium
dioxide/wax liners.) Indeed, a nearly one-dimensional pressure field
results after only a few milliseconds. Nevertheless, flamespread, as
depicted in Figure 7, clearly reflects the radial stimulus provided by the
centercore igniter. Conversion to the quasi-two-dimensional representation
rapidly follbws the completion of flamespread, which occurs within 6 ms of
the onset o. basepad combustion for all calculations described. Resulting
pressure-time and pressure-difference profiles are provided in Figure 8,
along with previously-reported calculated results and experimental data.
Also included in the figure is a recently-recorded, pressure -difference
profile which is very closely approximated by the TDNOVA prediction. While
providing an encouraging comparison between current theory and experiment,
this difference from earlier experimental data highlights the problem of
variability in pressure waves with bagged charges.

A companion calculation for the M203 Propelling Charge loaded at
maximum standoff from the spindle face (i.e., pushed forward against the
projectile base) yields the pressure-field plots presented in Figure 9. We
note the presence of a strong, reverse pressure gradient (at -3 ms) , often
described in the past to be the consequence of a grossly one-dimensional
flamespreading event resulting from improper functioning of the
centercore. We note, however, that Figure 10 clearly depicts radial
flamespread, suggesting the locally-high forward pressurization to be morp
the result of the iniLal distribution of propellant in the chamber than of
anomalous behavior associated with vigorous, two-phase flow dynamics.
Predicted pressure-time and pressure-difference profiles for this
calculation are provided in Figure 11.

13

/ . . .. . . .



4-1

En U,
-d-

00

>

1i4

144



44

0

4J
L Io

3VRLV 3000

- - 0$4

I I I4C
cc

N4

4J

U - U 3 a J

U S ~is I



4.h

,,fl

o
to

A'- II

N|

I

z

- - S.

00

/ I"

- - U,
A II- C-,

S4

O -o

0

-:::L-

8 0u "4(W3) NGl IV3O *W1QV¥i
1.

16



- -

FOWR

I-I
---- 4M 6M 12 01 10 1

EXPMTAL DATA CMZ 6
......EPMENTAL DATA (SfCU5)

0 46 12 16 21

Figure 8. Pressure-Time and Pressure-Difference Profiles,
Predicted and Experimental, for M203 Charge at 25-mm Standoff

17



rr

.41

4> p4

co,

3 1

II

'4

a Ia0

~~~~~~6 Aun unm fi
PM IPM lPM n



44

41J

U,

I v

C)

< u

0- IV
Icc

o:

(WO N'.4O I C

190



a - SPINDLEj
/ - - -FORWARD

I , I 1 I I I

| ,I

1-

-20-

401

0 4 8 12 16 Uo

Figure 11. Predicted Pressure-Time and Pressure-Difference Profiles
for M203 Charge at Maximum Standoff

20

.. .. .. . .. . .. I I I .. . . . . . . ., r . . . ,, ,__ •...M. .. ,



Additional calculations were performed with TDNOVA using data bases
altered to reflect the possible, early rupture of the bag sidewall and/or
failure of the centercore igniter. Results from several of these
calculations are displayed in Figures 12 and 13. Significant impact is
observed, though the weak-bag condition (i.e., zero strength) did not lead
to large pressure waves unless centercore functioning was delayed by at
least a millisecond as well. This result suggests that localized ignition
in addition to an unconfined propellant bed is required in order to effect
the collapse of circumferential ullage against the chamber sidewall at a
time when critical longitudinal pressure gradients exist. A calculation
performed using a strong, permeable bag (i.e., 0o.6-!Pa rupture strength),
however, exhibited a tolerance to this delay in centercore functioning
without the formation of large pressure waves, evidently a result of
pressure equilibration via the persistent, circumferential ullage external
to the bag.

In addition, an approximately 10-percent decrease in peak chamber
pressure was observed for both strong-bag and full-diameter (i.e., quasi-
one-dimensional) charge configurations. While differences in effective,
macroscopic permeability may be respons. le for this behavior, no single,
consistent explanation has yet been formul ted.

III. CONCLUSIONS

We have demonstrated successful application of TDNOVA to the bagged-
charge artillery problem. The treatment of radial flow in the vicinity of a
centercore igniter, along with explicit recognition of flow of early
combustion products external to the propellant package, is shown to impact
significantly the predicted path of flame propagation and the resulting
longitudinal structure of the pressure field, particularly in comparison to
earlier one-dimensional simulations. Of major importance is the result that
large differential pressures can accompany the maximum-charge-standoff
configuration despite proper functioning of the centercore igniter.

We did not, however, reproduce the simple relationship between bag
sidewall strength and pressure waves revealed in quasi-two-dimensional
simulations reported previously6 . The improved level of modeling afforded
by TDNOVA paints an even more convincing picture of the complexity of the
interplay between igniter, ullage, and packaging components. interestingly,
we even note a sensitivity of aximum chamber pressure to the degree of
propellant confinement during flamespread.

We also observe, in agreement with earlier simulations, predicted
ignition delays on the order of several milliseconds as opposed to the
several tens of milliseconds experienced experimentally. Additional TDNOVA
calculations performed with increased ignition temperatures for the black
powder centercore and, indeed, with the centercore turned off entirely did
not substantially increase ignition delays. Not unexpectedly, we find that
a more complete picture of the sequence of events occurring during igniter
functioning will be required to bring simulations of this portion of the
cycle in accord with reality.

21
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